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On the Problem of Applying Mode-Matching
Techniques in Analyzing Conical
‘Waveguide Discontinuities

GRAEME L. JAMES

Abstract —Mode-matching techniques in the past have been successfully
" used to analyze rectangular and circular waveguide problems involving
transverse discontinuities. The extension of this method to conical wave-
guide discontinuities is shown to exhibit difficulties of convergence caused
by the behavior of the cutoff conical modes. To illustrate the problem, the
junction of a smooth-walled cylindrical waveguide with a corrugated conical
horn is discussed in some detail.

I. INTRODUCTION

HE SOLUTION to a transverse discontinuity in a
rectangular or circular waveguide using mode-match-

ing techniques has been shown to provide an accurate
means of determining the properties created by the discon-
tinuity [1]-[3]. With the properties of the single step estab-
lished, it is then possible to obtain a solution for any
circular or rectangular waveguide which can be considered
as a number of transverse discontinuities separated by
. short lengths of waveguide. This is demonstrated in [4] for
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the junction between a cylindrical smooth-walled wave-
guide and a corrugated cylindrical waveguide.

A natural extension of this approach is to analyze trans-
verse discontinuities in conical waveguides. However, in
doing so, a numiber of difficulties arise. This will be dem-
onstrated here by considering the example of the junction
between a smooth-walled cylindrical waveguide and a cor-
rugated conical horn. To begin, we review the technique as
applied to a small-angle horn where the analysis can be
carried out in terms of cylindrical waveguide modes.

II. JUNCTION BETWEEN CYLINDRICAL GUIDE AND
SMALL-ANGLE CORRUGATED CONICAL HORN

The radiation pattern of corrugated conical horns are
characterized by low sidelobe and low cross-polarization
levels. As a result, they are used extensively as feeds in
high-performance low-noise reflector antenna systems. To

- maintain these desirable features, careful design of the

throat region of the horn (i.e., the circular-to-conical wave-
guide junction) is crucial. If the horn semi-angle 6, is small
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Fig. 1. (a) A cross-sectional view of a cylindrical-to-corrugated conical
waveguide junction for a small-angle horn. (b) The basic discontinuity
problem used in analyzing the junction.

(8, <20°) then the slots forming the corrugated conical
surface can be set normal to the axis of the horn, as shown
in Fig. 1(a). The throat region of the horn can then be
considered as a series of changes in circular waveguide
cross section, as in Fig. 1(b), separated by short lengths of
circular waveguide.

The electromagnetic field E, H transverse to the z-direc-
tion in a circular waveguide of radius a can be represented
by the modal solution (assuming here an azimuthal wave-
number of one)

E = Z(All + Bﬂ)el’

H=Y(Y4,~ Y, B,)h,

M

where e, , h, are the transverse modal fields, Y,", Y, are the
outward and inward wave admittances, and 4,, B, are
the modal coefficients. The transverse modal fields and the
wave admittance are deduced from the outward and in-

ward wave functions ", ¢, given by

v =f,(0,0)exp(F 7,kz)
where

sin ¢ }

cos ¢

1(0.9) = 1,(X,p/0) @)
Here the value of X, is determined by the boundary
condition at p = a (where for TE,, modes, J;(X,) =0 and
for TM,, modes, J;( X,) = 0). The propagation coefficient
¥, is equal to jA, for propagating modes (when X, < ka),
and to A, for cutoff modes (X, > ka); in each case A, = |1
—(X, /ka)?|*/2. The wave admittances, normalized to the
free-space admittance ‘/Eﬁ , are given by

Y, =Y =4,,
R

x, <ka

x,>ka (3a)

p>
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for TE,, modes and by
Y'=Y"=1/A,, x,<ka
Y=Y, =j/A,, x>k (3b)
for TM,, modes.

In solving the step discontinuity problem illustrated in
Fig. 1(b), we begin by representing the fields in regions I
and II by the modal solution given by (1). Then by
matching the fields across the common boundary at z =0,
we can express the solution for the unknown modal coeffi-
cients in a scatter matrix formulation as described in [4].
The scatter matrices for the changes in waveguide cross
section in Fig. 1(a), together with those for the short
lengths of waveguide separating them which go to make up
the slots and flanges of the corrugated surface (the scatter
matrix for a length of waveguide is trivially obtained), are
progressively cascaded through the horn to determine its
electromagnetic behavior. This technique discussed in [4] is
applied in [5] to small-angle corrugated horns of the type
shown in Fig. 1(a). The method has also been extended to
analyze the effect of ring-loaded slots [5], [6], but for our
purposes here we need only consider conventional slots, as
in Fig. 1(a).

III. JuNCTION BETWEEN CYLINDRICAL GUIDE AND

LARGE-ANGLE CORRUGATED CONICAL HORN

When the horn semi-angle is much greater than 20°,
then it is more usual and desirable to set the slots normal
to the conical surface, as shown in Fig. 2(a). To analyze
this problem by the above method we approximate the
slots (and flanges) by changes in conical waveguide cross
section separated by short lengths of conical waveguide.
This is illustrated in Fig. 2(b) for a single slot. Thus the
basic discontinuity to be solved is shown in Fig. 2(c): it is
necessary to determine the scatter matrix through the junc-
tion at radius r,, between two smooth-walled conical wave-
guides having differing angles. As before, we express the
field in regions I and II of Fig. 2(c) by the modal solution
given by (1). For a conical waveguide the wave functions
Y+ are given by

v =1g,(0,0) HPD (kr) (4)

where

5.0.9) = Beost){ 0% )

For values of horn semi-angle #, < 60° we can use the
approximation to the Legendre function given by Pl(cos )
= —aJ)(X,0/0,) where 6 =X, /0,=v+1/2 and X, is as
defined above for cylindrical waveguides. With this ap-
proximation g,(#,¢) is similar in form to f,(p,¢) for
cylindrical waveguides. As a result, the integrals involving
cross-products of the transverse fields that occur in the
solution for the waveguide discontinuity can (for the coni-
cal waveguide case) be obtained (with the exception of a
constant) directly from the solutions given in [4] with
ap, ay; replaced by 6,, 6,.
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Fig. 2. Cross-sectional view of (a) cylindrical-to-corrugated conical
waveguide junction for a large-angle horn; with (b) the approximation
used for the slots; and (c), (d) the basic discontinuity problems used in
analyzing the junction.

The main, and crucial, difference between the two cases
is in the propagation behavior in the direction normal to
the transverse fields. If we can assume that kr is large, the
uniform asymptotic expansion of the spherical Hankel
function can be used in the conical waveguide mode func-
tion. Thus we have

f{y(l)(z)(kr) = jy(kr)i JNy(kr)

a’r 4
*'[m [4i()F jBi(7)] (5)
where
o=v+1/2,7=—0%3¢
and
([(kr/o)2—~l]1/2—cos'l(o/kr)),
2/382 = kr/o>t

exp(j37/2)(jcos (o /kr)
~[1=(kr/e)]?), Krjo<1.

The normalized wave admittances for TE,, modes in the
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conical waveguide are

Y= jHP (kr)/HP (kr) Y, == jHD (kr) /HD (kr)
(6)

and for TM,, modes the wave admittances are given by the

inverse of these expressions. Making use of (5) we can
write the TE;, mode admittances as

. _ 1 Bi'(7)F jdi’(7)
o ”<|T|1/2 Ai(r)+ jBi(r) } g

where we interpret the value of ka in A, as equal to kré,.
For modes that are strongly propagating the term inside
the curly bracket, (7) reduces to unity and consequently the
wave impedances are similar to the cylindrical waveguide
result given by (3). For modes that are strongly cutoff,
7>1 and (7) becomes

= =Ae 3 F A, TE,, modes

v

1
v

v

TM,, modes.  (8)
As is well known, the mode in cylindrical waveguides is
abruptly cut off when X, = ka, with the wave admittance
changing from being purely conductive to being purely
susceptive, whereas in conical waveguides there is no well-
defined cutoff but rather a cutoff radius at kr = o, where
the wave admittance changes from being predominantly
conductive to being predominantly susceptive. Another
important difference between cylindrical and conical wave-
guides is that for the latter case any outward cutoff mode
which is generated decays exponentially away from the
discontinuity (as in a cylindrical waveguide) while any
inward cutoff mode generated increases exponentially to-
wards the apex of the cone.

Before we see how these features of conical waveguide
mode propagation affect our results, there is the additional
problem of the junction between two conical waveguides
having the same diameter but with different angles, as
shown in Fig. 2(d). The scatter matrix solution to this
problem is necessary for the input junction from the cir-
cular waveguide (where §,=0) and also allows for any
flaring (i.e., increasing 6,) along the horn. If ¢, > 6, as in
Fig. 2(d) then, as pointed out in [7], a direct mode-match-
ing procedure is, strictly, not applicable, since neither
modal expansion for the two conical waveguides is valid in
the hatched segment shown in the figure. (Note that if
6, < @,, this problem does not arise, since the two wave-
guides share a common area where both modal expansions
are valid.) For a rigorous formulation, it is necessary to
provide the segment with its own field representation [7],
and this can lead to some formidable mathematical prob-
lems [8]. However, if 8, is not very much greater than 6,,
we can arrive at an approximate solution by continuing the
modal expansion of the field in region I beyond its strict
range of validity to the spherical cap at r =r, where we
match the transverse fields with those for region II.
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We now consider the procedure for mode matching up
to the first slot for the waveguide junction problem given
in Fig. 2(a). As an example we have chosen §, = 30° with
input circular waveguide radius a, /A = 0.35. For this case
the cutoff circles, where X, = krf), are shown in Fig. 3 for
the first three modes. As described above, the field can be
progressively matched at the boundaries U, V, and W
shown in the figure. Consider now the behavior of the first
three modes when excited at the V-boundary. Any TE,,
outward and inward modes excited at ¥ will be strongly
propagating and behave in a similar way to this mode in a
cylindrical waveguide. This will be true even for the inward
wave which arrives at the boundary at U, since the TE;;
mode is not near cutoff when it reaches this junction.

Any TE,, outward mode excited at V" will initially decay
exponentially away from the boundary with a mainly sus-
ceptive wave admittance as given in (8). As the TE, cutoff
circle is approached the propagation behavior will become
more complex, with the wave admittance given by (7).
However, any TE,, inward wave generated at V will re-
main cut off and (considered alone) will increase exponen-
tially towards the boundary at U. For the total TE,, mode
field in the section of waveguide U-V to remain bounded,
it is necessary for the waveguide junction at U to present
essentially a short circuit to this mode. The analysis of this
junction yields A, = — B, for all strongly cutoff modes,
thereby fulfilling the requirement that these modes be
bounded. This also applies to the TM;, inward mode.
Although at ¥ the TM;; mode can propagate, it is strongly
cut off by the time it reaches the boundary at U. For these
two modes the analysis yields, as before, 4, = — B, and a
standing wave exists to the left of the ¥ boundary. The
admittance of the TE,, wave Y, at ¥V is, therefore, deduced
to be

Ny (kr,) J, (kr,) — N, (kn, ) J, (kr, )
Y,=j=% 2 - 2
N, (kr,)J,(kr,) = N, (kr,) J, (kr,)

©)

and the admittance for the TM,; mode is given by the
inverse of this expression. If the two boundaries are well
separated, then J, (kr,) < J/( kr,) and the admittance given
by (9) reduces to

Y, = jJ/(kr,) /3, (kr,). (10)
In the expression for the admittance given by (9), there are
terms which are exponentially large (viz. N,,(kru)) and
terms which are exponentially small (viz. j,,(kru)). Herein
lies the difficulty in successfully analyzing problems such
as those illustrated in Fig. 3 by mode-matching methods.
Similar difficulties were encountered by Sporleder and
Unger [9] in a traveling-wave coupled-wave equation anal-
ysis of tapered-horn junctions. In their solution, they sub-
stituted for cutoff inward waves the wave admittance given
by (6) with that given by (10). This approach would appear
to be questionable on at least two counts. First, the imped-
ance given by (10) is not for a traveling-wave representa-
tion but is the result of the combination of the inward and
outward waves. Second, there is no indication in [9] of how
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TE,,

Fig. 3. Cross-sectional view of the cylindrical-to-conical waveguide
junction having a single slot in the horn.

to effect a smooth change from (10) to (6) when in the
vicinity of the cutoff radius. This would occur, for exam-
ple, if the input-wave radius g, increased so that the TM;;
cutoff radius r, was at or close to the radius 7, of the U
boundary.

To illustrate some of the problems encountered in coni-
cal waveguide matching we will consider the results for two
examples.

A. Cylindrical Guide to Conical Guide with a Single Step

Referring to Fig. 3, let us assume //A =0, §/A = oo,
ay/A=0.84, and o/A =0.5. With these dimensions, the
circular waveguide can propagate both the TE,; and TM;
mode. Assume the TE,; mode only is initially excited in
the cylindrical waveguide. We wish to determine the TE,;
mode return loss from the junction as a function of the
number M of input wavegnide modes used in the analysis.
Consider now the case where 6, is limited to 6 °. For such a
small angle the return loss result should be similar to the
cylindrical waveguide case (6, = 0°), which can be solved
accurately [1]-[4], and hence can be used to check the
accuracy of the small-angle conical-horn result. The case
then where 6, = 0° is shown in Fig. 4, and is seen to have
converged for M > 8. The corresponding result for §, =6°
is shown by curve (i) in the figure. For M > 3, the conical
waveguide modes are strongly cut off, and it is seen that by
the time the sixth mode has been included the solution has
become unstable owing to the numerical difficulties of
dealing with large and small quantities in the one expres-
sion, as discussed above in relation to (9). For strongly
cutoff mode J,(kr,) x e~%*"" and N,(kr,)x e?*"”, In
the present example we have for the first cutoff mode
(M=3) r=3 and for the second cutoff mode 7 =6.5,
which gives a difference of nearly 10 orders of magnitude
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Fig. 5. (a) Cross-sectional view of a cylindrical-to-conical waveguide
Junction. (b) Comparison of the measured (----) and theoretical (—)
values for the TE;; mode return loss of the junction in (a).

between the spherical Bessel and spherical Neumann func-
tions. To highlight the importance of retaining the numeri-
cally small spherical Bessel function term in the solution,
refer to (8) for the wave admittance of strongly cutoff
modes. If we are tempted to ignore the real component as
being insignificant, then the result for the return loss is
given by curve (iii) in Fig. 4, which of course yields a
totally erroneous result. If we artificially limit the magni-
tude of 7 to the value of the first strongly cutoff mode, then
we get the result given by curve (ii), which converges to
around the expected value of the return loss.

As a further check on the solution, we measured the
TE,; mode return loss for the conical-horn step problem as
shown in Fig. 5. By limiting the magnitude of 7 for strongly
cutoff modes (as in curve (ii) of Fig. 4), it is seen that
generally very good agreement exists between theory and
experiment. The theoretical results shown are for M =4

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 9, SEPTEMBER 1983

°r

S
T

[
o
¥

W
o
T

Return loss (dB)

£~
o
T

Number of Modes M
(@

6/A=0-001

Return loss (dB)
3 g EN 8 b3
T T T T T

~2
o
T

90

100 |-

Number of Modes,M
(b)
Fig. 6. TE;; mode return loss for various values of 8, for the waveguide
shown in Fig. 3 where //A =0, 6/A=0.5, a,/A=0384. (a) §/A=1.
(b) 8,/ = 0.001.

but little variation from this result occurred by taking up to
12 modes in the analysis.

B. Cylindrical Guide to Conical Guide with a Single Slot

We will now consider the analysis for a single slot and
also consider larger values of horn angles. Referring to Fig.
3, let us assume (as in the first example) //A =0, a, /A =
0.84, and o/A = 0.5, but let § /A be fixed at 1 and 0.001,
and 0° < §, <60°. The return loss convergence is plotted
in Fig. 6 as a function of M. As before, we have also given
the cylindrical waveguide analysis result (6, = 0), and when
8/A =1 (Fig. 6(a)), this result is seen to converge for
M > 8. When 6, = 6°, the result becomes unstable after six
modes (curve (i)). (This is similar to the example shown in
Fig. 4.) By artificially limiting the value of 7, the result
(curve (ii)) appears satisfactory up to 10 modes but then it
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also becomes unstable. As the angle 6, is increased the
conical modes are less strongly cut off. This is demon-
strated in Fig. 6(a), where for 8, =30° the solution only
becomes unstable for M > 9 and for 6, = 60° the solution
has remained stable for up to the 12 modes considered.
When the slot width is made very narrow, as in Fig. 6(b),
the instability of the conical mode-matching solution is
clearly evident. When 6,=6°, limiting the value of 7
(curve (ii)) does not prevent the solution from going wildly
unstable as the strongly cutoff modes are included in the
solution. As before, the instability is delayed for larger
angle horns, occurring when M > 8§ for 6, = 30° and when
M >12 (not shown) for 6, =60°.

IV. CONCLUSION

It has been demonstrated that mode matching at discon-
tinuities in conical waveguides is severely restricted by the
behavior of the strongly cutoff conical modes directed
towards the apex of the horn. For large values of horn
semi-angle ,, the problem becomes less severe, to the

extent that mode-matching techniques as given here could .

be used successfully. However, more attention is needed to
solve the problem posed by the cylindrical waveguide to
conical-guide junction when 6, is large, since the commonly
used mode-matching method cannot be considered reliable.
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