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On the Problem of Applying Mode-Matching
Techniques in Analyzing Conical -

Waveguide Discontinuities

GRAEME L. JAMES

Abstruct —Mode-matching techrdques in the past have been successfully

used to anafyze rectangular and circular waveguide problems involving

transverse diseontinuities. The extension of this method to conical wave-

guide discontinuities is shown to exhibit difficulties of convergence caused

by the behavior of the cutoff conicaf modes. To illustrate the problem, the

junction of a smooth-wafled cylindrical waveguide with a corrugated conical

horu is discussed in some detail.

I. INTRODUCTION

T HE SOLUTION to a transverse discontinuity in a

rectangular or circular waveguide using mode-match-

ing techniques has been shown to provide an accurate

means of determining the properties created by the discon-

tinuity [1]–[3]. With the properties of the single step estab-

lished, it is then possible to obtain a solution for any

circular or rectangular waveguide which can be considered

as a number of transverse discontinuities separated by

short lengths of waveguide. This is demonstrated in [4] for
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the junction between a cylindrical smooth-walled wave-

guide and a corrugated cylindrical waveguide.

A natural extension of this approach is to analyze trans-

verse discontinuities in conical waveguides. However, in

doing so, a number of difficulties arise. This will be dem-

onstrated here by considering the example of the junction

between a smooth-walled cylindrical waveguide and a cor-

rugated conical lhorn. To begin, we review the technique as

applied to a small-angle horn where the analysis can be

carried out in terms of cylindrical waveguide modes.

II. JUNCTION BETWEEN CYLINDRICAL GUIDE AND

SMALL-ANGLE CORRUGATED CONICAL HORN

The radiation. pattern of corrugated conical horns are

characterized by low sidelobe and low cross-polarization

levels. As a result, they are used extensively as feeds in

high-performance low-noise reflector antema systems. To

maintain these desirable features, careful design of the

throat region of the horn (i.e., the circular-to-conical wave-

guide junction) is crucial. If the horn semi-angle f30 is sm~
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Fig. 1. (a) A cross-sectional view of a cylindrical-to-corrugated conical
waveguide junction for a small-angle horn. (b) The basic discontinuity
problem used in analyzing the junction.

(60s 200 ) then the slots forming the corrugated conical

surface can be set normal to the axis of the horn, as shown

in Fig. l(a). The throat region of the horn can then be

considered as a series of changes in circular waveguide

cross section, as in Fig. l(b), separated by short lengths of

circular waveguide.

The electromagnetic field E, H transverse to the z-direc-

tion in a circular waveguide of radius a’ can be represented

by the modal solution (assuming here an azimuthal wave-

number of one)

where e,, h, are the transverse modal fields, Y,+, YV–are the

outward and inward wave admittances, and A., B, are

the modal coefficients. The transverse modal fields and the

wave admittance are deduced from the outward and in-

ward wave functions $;, I)L given by

where

(2)

Here the value of XV is determined by the boundary

condition at p = a (where for TEI, modes, .l{( XV) = O and

for TMI, modes, .JI( X, ) = O). The propagation coefficient

% is equal to@. for propagating modes (when X.< ka),
and to AV for cutoff modes (XV > ka); in each case A, = 11

– ( XV/ka)2 Iliz. The wave admittances, normalized to the

free-space admittance ~, are given by

yv+ = yv- = A
JJ? Xv < ka

y,+ =YV- = – jAv, Xv > ka (3a)

for TEIV modes and by

~+ = ~- =l/AV, x, < ka

Y$ = YV- = j/AV, XV > ka (3b)

for TMIV modes.

In solving the step discontinuity problem illustrated in

Fig. l(b), we begin by representing the fields in regions I

and II by the modal solution given by (l). Then by

matching the fields across the common boundary at z = O,

we can express the solution for the unknown modal coeffi-

cients in a scatter matrix formulation as described in [4].

The scatter matrices for the changes in waveguide cross

section in Fig. l(a), together with those for the short

lengths of waveguide separating them which go to makeup

the slots and flanges of the corrugated surface (the scatter

matrix for a length of waveguide is trivially obtained), are

progressively cascaded through the horn to determine its

electromagnetic behavior. This technique discussed in [4] is

applied in [5] to small-angle corrugated horns of the type

shown in Fig. l(a). The method has also been extended to

analyze the effect of ring-loaded slots [5], [6], but for our

purposes here we need only consider conventional slots, as

in Fig. l(a).

III. JUNCTION, BETWEEN CYLINDRICAL GUIDE AND

LARGE-ANGLE CORRUGATED CONICAL HORN

When the horn semi-angle is much greater than 20°,

then it is more usual and desirable to set the slots normal

to the conical surface, as shown in Fig. 2(a). To analyze

this problem by the above method we approximate the

slots (and flanges) by changes in conical waveguide cross

section separated by short lengths of conical waveguide.

This is illustrated in Fig. 2(b) for a single slot. Thus the

basic discontinuity to be solved is shown in Fig. 2(c): it is

necessary to determine the scatter matrix through the junc-

tion at radius ro, between two smooth-walled conical wave-

guides having differing angles. As before, we express the

field in regions I and II of Fig. 2(c) by the modal solution

given by (l). For a conical waveguide the wave functions

$; are given by

+;=gp(O, @)fi;2J(1J(kr) (4)

where

For values of horn semi-angle 80<60° we can use the

approximation to the Legendre function given by P~(cos O)
=— OJ1(XVd/Oo) where u = XV/60 = v +1/2 and XV is as
defined above for cylindrical waveguides. With this ap-

proximation gr(d, ~) is similar in form to ~V(p, ~) for

cylindrical waveguides. As a result, the integrals involving

cross-products of the transverse fields that occur in the

solution for the waveguide discontinuity can (for the coni-

cal waveguide case) be obtained (with the exception of a

constant) directly from the solutions given in [4] with

al, all replaced by 00,01.
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Fig. 2. Cross-sectionaf view of (a) cylindrical-to-corrugated conical
waveguide j unction for a large-angle horn; with (b) the approximation
used for the slots; and (c), (d) the basic discontinuity problems used in
analyzing the junction.

The main, and crucial, difference between the two cases

is in the propagation behavior in the direction normal to

the transverse fields. If we can assume that kr is large, the

uniform asymptotic expansion of the spherical Hankel

function can be used in the conical waveguide mode func-

tion. Thus we have

conical waveguide are

~+ = jfij2)’(kr)/@f2) (kr) ~- = – jfijl)’(kr)/@)(kr)

(6)

and for TMIV modes the wave admittances are given by the

inverse of these expressions. Making use of (5) we can

write the TEIV mode admittances as

( 1 Bi’(~)TjAi’(fr)
Yv~ = A, —

17]’/’ Ai(7)*jBi(T) )
(7)

where we interpret the value of ka in AV as equal to krdo.

For modes that are strongly propagating the term inside

the curly bracket, (7) reduces to unity and consequently the

wave impedances are similar to the cylindrical waveguide

result given by (3). For modes that are strongly cutoff,

r >1 and (7) becomes

Y,* = AVe-a13’3’2T jA , TEI, modesv

y“+ = _le-4/3T3v’
* j/Av, TMIV modes. (8)

v

As is well known, the mode in cylindrical waveguides is

abruptly cut off when XV = ka, with the wave admittance

changing from being purely conductive to being purely

susceptive, whereas in conical waveguides there is no well-

defined cutoff but rather a cutoff radius at kr = o, where

the wave admittance changes from being predominantly

conductive to being predominantly susceptive. Another

important difference between cylindrical and conical wave-

guides is that for the latter case any outward cutoff mode

which is generated decays exponentially away from the

discontinuity (as in a cylindrical waveguide) while any

inward cutoff mode generated increases exponentially to-

wards the apex of the cone.

Before we see how these features of conical waveguide

mode propagation affect our results, there is the additional

problem of the junction between two conical waveguides

having the same diameter but with different angles, as

shown in Fig. 2(d). The scatter matrix solution to this
fi0J(2)(kr) = jv(kr)+ .jfi,,(kr)

v problem is necessary for the input junction from the cir-. . .

-[ 1
2 1/4

[~i(T)+jBi(r)] (5)
(./;,;2- 1

u=v+l/2, T=–u2/3~

([(kr/cr)2-1]1/2 -cos-l(cr/kr)) ,

kr/a >1

exp ( j3m/2) ( jcos - 1 ( u/kr )

\ -[1-(kr/o)2]12), kr/cr <l.

The normalized wave admittances for TEII modes in the

cular waveguide (where /30= O) and also allows for any

flaring (i.e., increasing 190)along the horn. If 01> 6., as in

Fig. 2(d) then, as pointed’ out in [7], a direct mode-match-

ing procedure is, strictly, not applicable, since neither

modal expansion for the two conical waveguides is valid in

the hatched segment shown in the figure. (Note that if

01< f30, this problem does not arise, since the two wave-

guides share a common area where both modal expansions

are valid.) For a rigorous formulation, it is necessary to

provide the segment with its own field representation [7],

and this can lead to some formidable mathematical prob-

lems [8]. However, if 61 is not very much greater than (3.,

we can arrive at an approximate solution by continuing the

modal expansion of the field in region I beyond its strict

range of validity to the spherical cap at r = rl where we

match the transverse fields with those for region II.
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We now consider the procedure for mode matching up

to the first slot for the waveguide junction problem given

in Fig. 2(a). As an example we have chosen 60 = 300 with

input circular waveguide radius a. /A = 0.35. For this case

the cutoff circles, where XV= krflo are shown in Fig. 3 for

the first three modes. As described above, the field can be

progressively matched at the boundaries U, V, and W

shown in the figure. Consider now the behavior of the first

three modes when excited at the V-boundary. Any TEII

outward and inward modes excited at V will be strongly

propagating and behave in a similar way to this mode in a

cylindrical waveguide. This will be true even for the inward

wave which arrives at the boundary at U, since the TE1l

mode is not near cutoff when it reaches this junction.

Any TEIZ outward mode excited at V will initially decay

exponentially away from the boundary with a mainly sus-

ceptive wave admittance as given in (8). As the TE12 cutoff

circle is approached the propagation behavior will become

more complex, with the wave admittance given by (7).

However, any TE12 inward wave generated at V will re-

main cut off and (considered alone) will increase exponen-

tially towards the boundary at U. For the total TEIZ mode

field in the section of waveguide U–V to remain bounded,

it is necessary for the waveguide junction at U to present

essentially a short circuit to this mode. The analysis of this

junction yields AU= – BU for all strongly cutoff modes,

thereby fulfilling the requirement that these modes be

bounded. This also applies to the TMII inward mode.

Although at V the TMII mode can propagate, it is strongly

cut off by the time it reaches the boundary at U. For these

two modes the analysis yields, as before, A.= – B. and a

standing wave exists to the left of the V boundary. The

admittance of the TE12 wave Y. at V is, therefore, deduced

to be

and the admittance for the TMII mode is given by the

inverse of this expression. If the two boundaries are well

separated, then ~, ( krU) << ~V’(kro ) and the admittance given

by (9) reduces to

Z = j~J(kr.)/3,(kr.). (lo)

In the expression for the admittance given by (9), there are

terms which are exponentially large (viz: NV(krU)) and

terms which are exponentially small (viz. J.( kra)). Herein

lies the difficulty in successfully analyzing problems such

as those illustrated in Fig. 3 by mode-matching methods.

Similar difficulties were encountered by Sporleder and

Unger [9] in a traveling-wave coupled-wave equation anal-

ysis of tapered-horn junctions. In their solution, they sub-

stituted for cutoff inward waves the wave admittance given

by (6) with that given by (10). This approach would appear

to be questionable on at least two counts. First, the imped-

ance given by (10) is not for a traveling-wave representa-

tion but is the result of the combination of the inward and

outward waves. Second, there is no indication in [9] of how

TE12
\

Fig. 3. Cross-sectional view of the cylindrical-to-conicaf waveguide
junction having a single slot in the horn.

to effect a smooth change from (10) to (6) when in the

vicinity of the cutoff radius. This would occur, for examp-

le, if the input-wave radius a. increased so that the TMII

cutoff radius r2 was at or close to the radius rU of the U

boundary.

To illustrate some of the problems encountered in coni-

cal waveguide matching we will consider the results for two

examples.

A. Cylindrical Guide to Conical Guide with a Single Step

Referring to Fig. 3, let us assume l/A= O, 8/A = co,

a. /A = 0.84, and o/A = 0.5. With these dimensions, the

circular waveguide can propagate both the TEII and TMII

mode. Assume the TEII mode only is initially excited in

the cylindrical waveguide. We wish to determine the TEII

mode return loss from the junction as a function of the

number M of input waveguide modes used in the analysis.

Consider now the case where 00 is limited to60. For such a

small angle the return loss result should be similar to the

cylindrical waveguide case (00 = O0), which can be solved

accurately [1]–[4], and hence can be used to check the

accuracy of the small-angle conical-horn result. The case

then where 190= 00 is shown in Fig. 4, and is seen to have

converged for M >8. The corresponding result for 00 = 60

is shown by curve (i) in the figure. For M >3, the conical

waveguide modes are strongly cut off, and it is seen that by

the time the sixth mode has been included the solution has

become unstable owing to the numerical difficulties of

dealing with large and small quantities in the one expres-

sion, as discu~sed above in relation lo (9). For strongly

cutoff mode JV(krU ) a e – 2’3’3’2 and NV( krU) cc e 2’3’3’2. In

the present example we have for the first cutoff mode

(M= 3) ~ = 3 and for the second cutoff mode ~ = 6.5,

which gives a difference of nearly 10 orders of magnitude
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Fig. 4. TEII mode return loss as a function of the number of modes M
considered in the input cylindrical waveguide of Fig. 3 with [/A = O,
8/A= co, o/A =0.5, ao/A=0.84 and values of 190,0°, and 6°.
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Fig. 5. (a) Cross-sectionat view of a cytindricat-to-conicaf waveguide
Junction. (b) Comparison of the measured (----) and theoretical (—)
values for the TEII mode return loss of the junction in (a).

between the spherical Bessel and spherical Neumann func-

tions. To highlight the importance of retaining the numeri-

cally small spherical Bessel function term in the solution,

refer to (8) for the wave admittance of strongly cutoff

modes. If we are tempted to ignore the real component as

being insignificant, then the result for the return loss is

given by curve (iii) in Fig. 4, which of course yields a

totally erroneous result. If we artificially limit the magni-

tude of ~ to the value of the first strongly cutoff mode, then

we get the result given by curve (ii), which converges to

around the expected value of the return loss.

As a further check on the solution, we measured the

TEII mode return loss for the conical-horn step problem as

shown in Fig. 5. By limiting the magnitude of ~ for strongly

cutoff modes (as in curve (ii) of Fig. 4), it is seen that

generally very good agreement exists between theory and

experiment. The theoretical results shown are for M = 4

blk = 1.0
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Fig. 6. TEII mode return loss for various vatues of 60 for the waveguide
shown in Fig. 3 where l/A = O, u/A= 0.5, aO/A = 0.84. (a) 13/A =1.
(b) &/A = 0.001,

but little variation from this result occurred by taking up to

12 modes in the analysis.

B. Cylindrical Guide to Conical Guide with a Single Slot

We will now consider the analysis for a single slot and

also consider larger values of horn angles. Referring to Fig.

3, let us assume (as in the first example) l/A= O, a. /X =

0.84, and u/A = 0.5, but let S/A be fixed at 1 and 0.001,

and 00<00<600. The return loss convergence is plotted

in Fig. 6 as a function of M. As before, we have also given

the cylindrical waveguide analysis result ( 60 = O), and when

13/)t = 1 (Fig. 6(a)), this result is seen to converge for

M >8. When f30= 60, the result becomes unstable after Sk

modes (curve (i)). (This is similar to the example shown in

Fig. 4.) By artificially limiting the value of ~, the result

(curve (ii)) appears satisfactory up to 10 modes but then it
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also becomes unstable. As the angle f30 is increased the

conical modes are less strongly cut off. This is demon-

strated in Fig. 6(a), where for 80 = 300 the solution only

becomes unstable for M >9 and for 130=600 the solution

has remained stable for up to the 12 modes considered.

When the slot width is made very narrow, as in Fig. 6(b),

the instability of the conical mode-matching solution is

clearly evident. When 60 = 60, limiting the value of ~

(curve (ii)) does not prevent the solution from going wildly

unstable as the strongly cutoff modes are included ih the

solution. As before, the instability is delayed for larger

angle horns, occurring when M >8 for 00 = 300 and when

M >12 (not shown) for 130=600.

IV. CONCLUSION

It has been demonstrated that mode matching at discon-

tinuities in conical waveguides is severely restricted by the

behavior of the strongly cutoff conical modes directed

towards the apex of the horn. For large values of horn

semi-angle O., the problem becomes less severe, to the

extent that mode-matching techniques as given here could

be used successfully. However, more attention is needed to

solve the problem posed by the cylindrical waveguide to

conical-guide junction when 00 is large, since the commonly

used mode-matching method cannot be considered reliable.
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